- Gustafsson, T. (1987). Acta Cryst. C43, 816-819.
- Hopkins, T. E., Zalkin, A., Templeton, D. H. & Adamson, M. G. (1969). Inorg. Chem. 8, 2421-2425.
- James, B. R. & McMillan, R. S. (1975). Inorg. Nucl. Chem. Lett. 11, 837–839.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Krebs, B., Bonmann, S. & Erpenstein, K. (1991). Z. Naturforsch. Teil B, 46, 919–930.
- Lundgren, J.-O. (1978). Acta Cryst. B34, 2428-2431.
- Rosenstein, R. D., Oberding, M., Hyde, J. R., Zubieta, J., Karlin, K. D. & Seeman, N. C. (1982). Cryst. Struct. Commun. 11, 1507–1513.
- Sletten, E. & Kaale, R. (1977). Acta Cryst. B33, 158-160.
- Taesler, I. & Lundgren, J.-O. (1978). Acta Cryst. B34, 2424-2428.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 3209-3212.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1994). C50, 1686–1687

cis-Dichloro(*C-rac*-5,12-dimethyl-1,4,8,11tetraazacyclotetradecane-*N*, *N'*, *N''*, *N'''*)cobalt(III) Chloride, [CoCl₂(C₁₂H₂₈N₄)]Cl

TAHIR H. TAHIROV AND TIAN-HUEY LU*

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

BOR-HANN CHEN, TA-YUNG CHI AND CHUNG-SUN CHUNG

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300

(Received 23 December 1993; accepted 26 April 1994)

Abstract

The Co^{III} ion is six coordinate with a distorted octahedral geometry. The quadridentate macrocyclic ligand is in a *cis*-folded conformation. This complex ion contains a twofold axis which passes through Co and has a 1SR, 4SR, 8SR and 11SR configuration at the chiral N-atom centres and a 5RS and 12SR configuration at the chiral Catom centres. The two five-membered rings are in skew formations and the two six-membered rings have chair forms. Hydrogen bonds between the NH groups and the uncoordinated Cl ion help stabilize the crystal structure.

Comment

Transition metal-polyazacycloalkane complexes have been the subject of numerous investigations because of their particular stereochemistry (Bosnich, Poon & Tobe, 1965; Lindoy, 1989). In this paper, we report the crystal structure of *cis*-dichloro(C-*rac*-5,12-dimethyl-1,4,8,11tetraazacyclotetradecane-N,N',N'')cobalt(III) chloride, (I).

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Two molecules of different conformations occupy the same position. The only difference is in the disposition of the methyl group, as shown in Fig. 1: one at C(3) with 35% probability and the other at C(3') with 65% probability. Both molecules contain a twofold axis passing through Co as well as through the uncoordinated Cl⁻ ion. The Co^{III} ion is six coordinate with a distorted octahedral geometry. The quadridentate macrocyclic ligand is in a *cis*-folded conformation with both five-membered rings in skew formations and both six-membered rings in chair forms. The four chiral N-atom centres are 1SR, 4SR, 8SR and 11SR, and the chiral C-atom centres are 5RS and 12SR. The hydrogen bonds between the NH groups and the Cl⁻ ion help stabilize the crystal structure.

Experimental

The ligand C-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane and the title compound were prepared according to the literature method (Hay & Piplani, 1977; Hay, Bembi & House, 1984). The deep violet crystals obtained were recrystallized from 6 N HCl solution.

Crystal data

 $\frac{[\text{CoCl}_2(\text{C}_{12}\text{H}_{28}\text{N}_4)]\text{Cl}}{M_r = 393.67}$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Acta Crystallographica Section C ISSN 0108-2701 ©1994

Monoclinic
C2/c
$a = 9.178 (1) \text{ Å}_{1}$
<i>b</i> = 11.722 (2) Å
c = 16.100 (5) Å
$\beta = 90.96 (2)^{\circ}$
V = 1731.9 (6) Å ³
Z = 4
$D_x = 1.510 \text{ Mg m}^{-3}$

Data collection

Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: empirical (North, Phillips & Mathews, 1968) $T_{min} = 0.873, T_{max} =$ 0.999 2663 measured reflections 2521 independent reflections

Refinement

Refinement on F
R = 0.045
wR = 0.049
S = 1.78
2071 reflections
118 parameters
Only H-atom U's refined
Unit weights applied
$(\Delta/\sigma)_{\rm max} = 0.059$

Cell parameters from 25 reflections $\theta = 7.42-17.5^{\circ}$ $\mu = 1.45 \text{ mm}^{-1}$ T = 298 (3) K Parallelepiped $0.44 \times 0.32 \times 0.28 \text{ mm}$ Deep violet

2071 observed reflections $[I \ge 2.5(I)]$ $R_{int} = 0.019$ $\theta_{max} = 29.9^{\circ}$ $h = 0 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -22 \rightarrow 22$ 3 standard reflections frequency: 60 min intensity variation: $\pm 0.5\%$

 $\Delta \rho_{\text{max}} = 0.53 \ (8) \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.40 \ (8) \text{ e } \text{\AA}^{-3}$ Extinction correction: Zachariasen (1968) Extinction coefficient: 0.21 (1) mm Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²)

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	Occupancy	x	у	Ζ	Beq
Co	1.00	1/2	0.45528 (5)	1/4	2.695 (23)
Cl(1)	1.00	0.42314 (14)	0.59486 (8)	0.16271 (7)	5.15 (5)
Cl(2)	1.00	1/2	0.09937 (10)	1/4	5.17 (7)
N(1)	1.00	0.6964 (3)	0.44819 (25)	0.19995 (21)	3.87 (13)
N(2)	1.00	0.4246 (3)	0.34068 (24)	0.16897 (19)	3.78 (12)
C(1)	1.00	0.7764 (4)	0.3512 (3)	0.2369 (3)	4.75 (20)
C(2)	1.00	0.2627 (5)	0.3440 (4)	0.1740(3)	5.11 (20)
C(3)	0.35	0.4366 (19)	0.2540 (14)	0.0292 (8)	6.3 (7)
C(3')	0.65	0.8539 (9)	0.4486 (8)	0.0700 (5)	6.7 (4)
C(4)	1.00	0.4677 (6)	0.3464 (4)	0.0802(3)	5.47 (22)
C(5)	1.00	0.6285 (7)	0.3475 (4)	0.0689 (3)	6.3 (3)
C(6)	1.00	0.7095 (6)	0.4483 (4)	0.1077 (3)	5.87 (22)

Table 2. Selected geometric parameters (Å, °)

Co-Cl(1)	2.262 (1)	N(2)—C(4)	1.492 (6)
Co-N(1)	1.989 (3)	$C(1) - C(2^{i})$	1.488 (7)
Co-N(2)	1.989 (3)	C(3)C(4)	1.39(1)
N(1) - C(1)	1.473 (5)	C(3')C(6)	1.468 (9)
N(1)-C(6)	1.491 (6)	C(4)C(5)	1.490 (8)
N(2)—C(2)	1.490 (5)	C(5)—C(6)	1.525 (8)
$Cl(1)$ — Co — $Cl(1^i)$	87.34 (5)	Co-N(2)-C(2)	106.5 (3)
Cl(1)— Co — $N(1)$	93.1 (1)	Co-N(2)-C(4)	120.2 (3)
$CI(1)$ — Co — $N(1^i)$	90.4 (1)	C(2) - N(2) - C(4)	109.4 (3)
Cl(1)—Co—N(2)	88.83 (9)	$N(1) - C(1) - C(2^{i})$	107.9 (3)
$Cl(1)$ — Co — $N(2^{i})$	176.05 (9)	N(2) - C(2) - C(1')	108.1 (3)
N(1)CoN(1 ⁱ)	175.2(1)	N(2) - C(4) - C(3)	118.5 (7)
N(1)-Co-N(2)	90.8 (1)	N(2) - C(4) - C(5)	113.3 (4)

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

$N(1)$ —Co— $N(2^{i})$	86.0(1)	C(3)-C(4)-C(5)	97.4 (9)				
$N(2)$ —Co— $N(2^{i})$	95.0(1)	C(4)—C(5)—C(6)	115.7 (4)				
Co-N(1)-C(1)	108.5 (2)	N(1)-C(6)-C(5)	111.1 (4)				
Co-N(1)-C(6)	119.5 (3)	N(1) - C(6) - C(3')	120.0 (6)				
C(1)—N(1)—C(6)	110.8 (3)	C(3') - C(6) - C(5)	105.6 (5)				

Symmetry code: (i) $1 - x, y, \frac{1}{2} - z$.

The structure was solved by direct and Fourier methods, and refined using least-squares techniques. H atoms were located by difference Fourier synthesis and theoretical calculations. All computation was performed using the *NRCVAX* system of programs (Gabe, Le Page, White & Lee, 1987).

The authors thank the National Science Council for support under grants NSC83-0208-M007-038 and NSC83-0208-M007-044. They are also indebted to Ms Shu-Fang Tung for collecting the X-ray diffraction data.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: AS1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.
- Gabe, E. J., Le Page, Y., White, P. S. & Lee, F. L. (1987). Acta Cryst. A43, C-294.
- Hay, R. W., Bembi, R. & House, D. A. (1984). J. Chem. Soc. Dalton Trans. pp. 1927–1930.
- Hay, R. W. & Piplani, D. P. (1977). J. Chem. Soc. Dalton Trans. pp. 1956–1960.
- Lindoy, L. F. (1989). In *The Chemistry of Macrocyclic Ligand Complexes*. New York: Cambridge Univ. Press.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1994). C50, 1687-1690

Dipyridiniomethane Chloropentafluoroosmate(IV), [(C₅H₅N)₂CH₂][OsF₅Cl]

CLEMENS BRUHN AND WILHELM PREETZ

Institut für Anorganische Chemie, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

(Received 23 May 1994; accepted 9 June 1994)

Abstract

The sublattice of the mixed-ligand complex anions, $[OsF_5Cl]^{2-}$, of the title compound [N,Nmethylenepyridinium chloropentafluoroosmate(IV)] is completely ordered. Due to the mutual *trans* influence in the asymmetric Cl—Os—F axis, the Os—F distance of